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Abstract—Geometrical and topological properties of the set of
all belief functions generated by a random closed interval are
studied. It is shown that this set is a metrizable (noncompact)
simplex and its extreme points are completely characterized.
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I. INTRODUCTION

The study of belief measures (functions) on infinite uni-
verses was initiated by Dempster. In his paper [1] the upper
and lower probabilities are generated by a multivalued map-
ping and a rule for combining sources of information is pro-
posed. In particular, this multivalued mapping takes the form
of a random closed interval in the subsequent paper [2]. This
approach enables assigning degrees of belief and plausibility
to subsets of real numbers as in the the usual finite framework
for Dempster-Shafer theory [3]. Smets further investigated the
belief functions on reals in [4] and their application to data
analysis and uncertain knowledge representation is shown in
the recent articles [5], [6].

The aim of this contribution is to study the geometrical-
topological structure of the set Bel of all belief functions on
reals. By establishing a one-to-one correspondence between
the simplex of certain Borel probability measures and Bel
we will show that Bel is a simplex whose extreme points
can be fully described. Several published papers already dealt
with the similar topic. Shafer studied in [7] belief functions on
a system of sets of an infinite universe and their representation
by a probability measure or a probability charge. Denneberg
and Brüning [8] identified the extreme points of the compact
convex set of all belief functions on an algebra of sets. The
approach pursued herein can be put in contrast with the above
mentioned papers in certain points:

(i) We follow the M.H. Stone’s maxim “One must always
topologize” so that the symbiosis between the measure-
theoretic structure and topology is emphasized from the
beginning.

(ii) The set of all belief functions Bel is not compact.
(iii) The total monotonicity of a belief function is rather

a derived concept and not a primitive one (in accordance
with [2]).

It should be mentioned that investigation of the convex set of
totally monotone capacities on a topological space appeared

already in the Choquet’s foundational work [9]. While some
results proved in this paper are implicitly stated in the Cho-
quet’s paper, we provide a direct proof following the latest
development of topological capacities [10].

This article is structured as follows. In the next section
we introduce basic notions and definitions concerning belief
functions and geometry of simplices. Section III contains main
results (Proposition 3 and Theorem 2) and in Section IV we
compare the results obtained in this article with the properties
of belief functions on other universes such as the set of all
subsets of a finite set or an algebra of sets.

II. BASIC NOTIONS

A. Belief measures on real numbers

If S ⊆ Rn, then B(S) denotes the Borel subsets of S. By
K and G we denote the set of all compact subsets and the set
of all open subsets of R, respectively.

Let P be a probability distribution of a real random vector
(X,Y ) with P [X ≤ Y ] = 1. Such a probability distribution
is just a Borel probability measure on B(R2) whose support

sptP = R2 \
∪

{G | G ⊆ R2, G open, P (G) = 0}

is included in the halfplane

H = {(x, y) ∈ R2 | x ≤ y}.

Note that we always consider H equipped with the subspace
Euclidean topology of R2. The Borel probability measure P
is automatically inner regular with respect to the compact
subsets of H , that is, the equality

P (A) = sup {P (K) | K ⊆ A,K compact},

holds true for every A ∈ B(H).
In the sequel, we use for every A ∈ B(R) the expressions

[X,Y ] ⊆ A

and
[X,Y ] ∩A ̸= ∅

as shortcuts for

{(x, y) ∈ H | [x, y] ⊆ A}



and
{(x, y) ∈ H | [x, y] ∩A ̸= ∅},

respectively. In the light of [11], we call [X,Y ] a random
closed interval.

The following definition has its origin in [2]. The probability
distribution P of the random vector (X,Y ) plays exactly the
same role as a basic (mass) assignment in the finite setting for
Dempster-Shafer theory.

Definition 1. A belief measure on B(R) is a function

Bel : B(R) → [0, 1]

such that

Bel(A) = P [[X,Y ] ⊆ A], A ∈ B(R). (1)

The function Pl : B(R) → [0, 1] defined by

Pl(A) = P [[X,Y ] ∩A ̸= ∅], A ∈ B(R), (2)

is called a plausibility measure.

Observe that
Bel(A) = 1− Pl(A),

where A ∈ B(R) and A denotes the complement of A.
Because of the obvious duality between belief measures and
plausibility measures, we will confine to the investigation of
belief measures.

The following properties of a belief measure are direct con-
sequences of the definition (1) together with inner regularity
of the Borel probability measure P .

Proposition 1. Every belief measure Bel on B(R) has the
following properties:

(i) Bel(∅) = 0,Bel(R) = 1
(ii) if A,B ∈ B(R) are such that A ⊆ B, then

Bel(A) ≤ Bel(B)

(iii) if n ≥ 2 and A1, . . . , An ∈ B(R), then

Bel
( n∪

i=1

Ai

)
+

∑
I⊆{1,...,n}

I ̸=∅

(−1)|I| Bel
(∩

i∈I

Ai

)
≥ 0

(iv) if (An) ∈ B(R)N, where An ⊇ An+1 for each n ∈ N,
then

lim
n→∞

Bel(An) = Bel
( ∞∩
n=1

An

)
(v) if (An) ∈ B(R)N, where An ⊆ An+1 for each n ∈ N,

then

lim
n→∞

Bel(An) = Bel
( ∞∪
n=1

An

)
(vi) Bel(A) = sup {Bel(K) | K ⊆ A, K ∈ K}, for every

A ∈ B(R)

In particular, the properties (ii)-(iii) say that every belief
function Bel is a totally monotone set function on B(R).

Every belief measure on B(R) can be extended to a so-
called capacity defined on the set 2R of all subsets of R. We
adopt the definition of capacity used in [10, Definition 1.1].
A capacity is a function c : 2R → [0,∞] such that

(i) c(∅) = 0,
(ii) if A ⊆ R, then c(A) = sup {c(K) | K ⊆ A, K ∈ K},

(iii) if K ∈ K, then c(K) = inf {c(G) | G ⊇ K, G ∈ G}.
Every capacity is thus uniquely determined by its values on
K. Since every belief measure Bel is continuous from above
by (iv) in Proposition 1, it results from [10, Proposition 1.1]
that the set function Bel′ defined by

Bel′(A) = sup {Bel(K) | K ⊆ A, K ∈ K}, A ⊆ R,

is a capacity. Hence we may identify each belief measure Bel
with the restriction to B(R) of the capacity Bel′. We will
tacitly assume this identification in Section III.

B. Convex sets and simplices

There appear more different notions of a simplex in the
literature so we repeat all the necessary definitions for the
sake of clarity. Our exposition is based on [12], where the
original Choquet’s definition of simplex is used.

Let E be a real linear space. A convex set in E is any
subset K of E that is closed under convex combinations: if
x1, . . . , xn ∈ K and αi ≥ 0 with

∑n
i=1 αi = 1, then

α1x1 + · · ·+ αnxn ∈ K.

An extreme point of a convex set K is a point e ∈ K such
that the set K \ {e} is convex. The set

extK = {x ∈ K | x is an extreme point of K }

is called an extreme boundary of K. By an affine combination
we mean a linear combination α1x1 + · · ·+ αnxn with

α1 + · · ·+ αn = 1, αi ∈ R.

A subset A of E is said to be affinely independent if there does
not exist an element a ∈ A that can be expressed as an affine
combination of elements from A \ {a}. An affine subspace of
E is any subset of E that is closed under affine combinations.

Let K1 and K2 be convex sets in linear spaces E1 and E2,
respectively. A mapping f : K1 → K2 is said to be affine if

f(α1x1 + · · ·+ αnxn) = α1f(x1) + · · ·+ αnf(xn),

for every convex combination α1x1 + · · ·+ αnxn ∈ K1. If f
is a bijection, then the inverse mapping f−1 is automatically
also affine and we call f an affine isomorphism of K1 and
K2.

A convex cone in a linear space E is a subset C of E such
that

(i) 0 ∈ C,
(ii) if α1, α2 ≥ 0 and x1, x2 ∈ C, then α1x1 + α2x2 ∈ C.

A base for a convex cone C is any convex subset K of C
such that every non-zero element y ∈ C may be uniquely
expressed as y = αx for some α ≥ 0 and some x ∈ K. The
next criterion is useful when deciding whether a given convex
set can be a base for some convex cone.



Proposition 2 (Proposition 10.2 in [12]). Let K be a non-
empty convex subset of a linear space E and

C = {αx | α ≥ 0, x ∈ K}.

Then C is a convex cone in E and the following conditions
are equivalent:

(i) K is a base for C.
(ii) K is contained in an affine subspace A of E such that

0 /∈ A.

A convex cone C is said to be pointed provided x,−x ∈ C
implies x = 0. Observe that a convex cone possessing a base
must be pointed.

If C is a pointed convex cone in a linear space E, then
a binary relation ≤C on E defined by

x ≤C y whenever y − x ∈ C,

for every x, y ∈ E, makes E into a partially ordered linear
space. Precisely, this means that for all x, y, z ∈ E with x ≤C

y and any α ≥ 0, it follows that

x+ z ≤C y + z and αx ≤C αy.

Moreover, we obtain C = {x ∈ E | 0 ≤C x}. A lattice cone is
any pointed convex cone C in E such that the set C endowed
with a partial order ≤C is a lattice. A simplex in a linear space
E is any convex subset S of E that is affinely isomorphic to
a base for a lattice cone in some linear space. The extreme
boundary of a simplex is an affinely independent subset of E
[12, Corollary 10.8].

Example 1. Let E = Rk and S be the convex hull of a finite
affinely independent subset {x1, . . . , xn} of E. For example,
in R3 we can take the three standard unit basis vectors. We
call the set S an (n − 1)-simplex. Every (n − 1)-simplex is
a simplex in the sense of the above definition.

In the rest of this section E denotes a locally convex
Hausdorff space. Compact convex subsets of such a space
permit a neat characterization.

Theorem 1 (Krein-Milman). If K is a compact convex subset
of a locally convex space X , then the convex hull of extK is
dense in K.

Krein-Milman theorem applies to the sets of belief functions
studied in both [7] and [8] since they are compact in the
product topology of some power of R—see Section IV for
more details. On the contrary, the set of all belief measures
studied in this paper is not compact in general. The absence of
compactness should not come as surprise at all, since already
the set of all Borel probability measures fails to be compact
in the weak topology, which is considered to be the “right”
one for most of applications of topological measure theory to
probability and statistics.

III. SPACE OF BELIEF MEASURES

We will investigate the space of belief measures by looking
at the properties of the corresponding space of certain Borel

measures whose support is included in H . Let M[0,1](H) be
the set of all nonnegative Borel measures µ on H satisfying
the condition µ(H) ∈ [0, 1] and M1(H) be the set of all Borel
probability measures on H . Observe that

M[0,1](H) = {αP | α ∈ [0, 1], P ∈ M1(H)}.

Given (x, y) ∈ H , put

ε(x,y)(A) =

{
1, (x, y) ∈ A,

0, otherwise.

Obviously, ε(x,y) is a Borel probability measure, which is
called the Dirac measure at (x, y).

Let f be a function H → R. The set

supp f = cl {(x, y) ∈ H | f(x, y) ̸= 0}

is called the support of f . Let Cc(H) be the Banach space
with the supremum norm of all continuous functions H → R
with compact support. We always consider the set M[0,1](H)
to be endowed with the vague topology [13] that is generated
by a basis consisting of the sets{
P ∈ M[0,1](H) | |∫H fi dP−∫H fi dP0| < ε, i = 1, . . . , n

}
,

for every P0 ∈ M[0,1](H), f1, . . . , fn ∈ Cc(H) and ε > 0.
In this topology, a sequence (Pn) in M[0,1](H) vaguely
converges to a Borel measure P ∈ M[0,1](H) iff

lim
n→∞

∫
H

f dPn =

∫
H

f dP

for every f ∈ Cc(H).
Let Bel be the set of all belief functions on B(R). By

Bel[0,1] we denote the image of M[0,1](H) via the correspon-
dence as in (1). Precisely, the elements of Bel[0,1] are exactly
the set functions Bel such that

Bel(A) = P [[X,Y ] ⊆ A], A ∈ B(R), (3)

where P ∈ M[0,1](H). One way to define a topology on
Bel[0,1] is to introduce on it the vague topology of capacities
[10] generated by the subbase consisting of all the sets of the
form{
Bel ∈ Bel[0,1]|Bel(K) < ε

}
,
{
Bel ∈ Bel[0,1]|Bel(G) > ε

}
,

for every K ∈ K, G ∈ G and ε > 0. The role of the set
Bel[0,1] of “generalized belief measures” is rather technical in
this paper as it enables using properties of continuous bijective
mappings between two compact spaces in the second part of
the proof of Theorem 2.

Proposition 3. The set of all belief functions Bel on B(R) is
affinely homeomorphic to M1(H).

Proof: Our goal is to find an affine isomorphism of Bel
and M1(H) that is simultaneously a homeomorphism. To this
end, let

a : P ∈ M[0,1](H) 7→ Bel, (4)



where Bel is given by (3). Since a(M1(H)) = Bel, we need
only show that the mapping a is an affine homeomorphism
from M[0,1](H) to Bel[0,1].

Let P1, P2 ∈ M[0,1](H) and α ∈ [0, 1]. Since for every
A ∈ B(R),

a(αP1 + (1− α)P2)(A) = (αP1 + (1− α)P2)[[X,Y ] ⊆ A] =

αa(P1)(A) + (1− α)a(P2)(A),

the mapping a is indeed affine. Let P1, P2 ∈ M[0,1](H), where
P1 ̸= P2. This means that there must be some (a, b) ∈ H such
that

P1({(x, y) ∈ H | x ≥ a, y ≤ b})
̸=

P2({(x, y) ∈ H | x ≥ a, y ≤ b}),

which reads as

P1[[X,Y ] ⊆ [a, b]] ̸= P2[[X,Y ] ⊆ [a, b]].

The laste inequality is exactly

a(P1)([a, b]) ̸= a(P2)([a, b]).

Hence a is affine, injective and onto Bel[0,1], so it is an affine
isomorphism of M[0,1](H) and Bel[0,1].

We will show that a is continuous. It suffices to check
sequential continuity as M[0,1](H) is a Polish space in the
vague topology [13, Theorem 31.5] and Bel[0,1] is metrizable
in the vague topology of capacities [10, p.23]. Suppose that
a sequence (Pn) in M[0,1](H) vaguely converges to a measure
P ∈ M[0,1](H). This means by the first implication in (the
proof of) [13, Theorem 30.2] that

lim sup
n→∞

Pn(K) ≤ P (K), (5)

for every compact set K ⊆ H , and

lim inf
n→∞

Pn(G) ≥ P (G), (6)

for every open set G ⊆ H. By [10, p.22-23] the sequence
(a(Pn)) vaguely converges to a(P ) in Bel[0,1] iff

lim sup
n→∞

a(Pn)(K) ≤ a(P )(K), K ∈ K, (7)

lim inf
n→∞

a(Pn)(G) ≥ a(P )(G), G ∈ G. (8)

Let K ∈ K. Then (5) and compactness of

{(x, y) ∈ H | [x, y] ⊆ K}

in H yield

lim sup
n→∞

a(Pn)(K) = lim sup
n→∞

Pn[[X,Y ] ⊆ K] =

lim sup
n→∞

Pn

(
{(x, y) ∈ H | [x, y] ⊆ K}

)
≤

P
(
{(x, y) ∈ H | [x, y] ⊆ K}

)
= a(P )(K),

which proves (7). The inequality (8) is proven completely
analogously by employing (6) together with the openness of

{(x, y) ∈ H | [x, y] ⊆ G}, G ∈ G

in H . Thus a is continuous and since M[0,1](H) is vaguely
compact [13, Corollary 31.3], the set Bel[0,1] is also vaguely
compact. This gives together with injectivity of a that a−1 is
continuous. Thus a is a homeomorphism of M[0,1](H) and
Bel[0,1] (see [14, Lemma I.5.8]).

Theorem 2. The set of all belief function Bel is a metrizable
simplex whose extreme boundary is formed by the belief
functions

Bel[x,y](A) =

{
1, [x, y] ⊆ A,

0, otherwise,
A ∈ B(R),

for every (x, y) ∈ H. Moreover, the extreme boundary of Bel
is homeomorphic to H .

Proof: The set of all belief function Bel is metrizable as
a subset of the metrizable space Bel[0,1]. Since Bel is affinely
isomorphic to M1(H) by Proposition 3, it suffices to verify
that M1(H) is a simplex. The convex set M1(H) is a base
for the set

M+(H) = {αP | α ∈ [0,∞), P ∈ M1(H)}

of all finite nonnegative Borel measures on H due to Proposi-
tion 2. The pointed convex cone M+(H) generates the usual
setwise ordering ≤ on the set M(H) of real-valued Borel
measures on H , that is,

µ ≤ ν whenever µ(A) ≤ ν(A), A ∈ B(H),

where µ, ν ∈ M(H). Then [15, Proposition 5, p.179] yields
that the ordering ≤ makes M+(H) into a lattice cone in which
the infimum is given by

(µ∧ ν)(A) = inf {µ(A1) + ν(A2) | (A1, A2) partition of A},

where (A1, A2) being a partition of A ∈ B(H) means that
A1, A2 ∈ B(H) are disjoint with A1∪A2 = A. The supremum
is then

(µ ∨ ν)(A) = −(−µ ∧ −ν)(A), A ∈ B(H).

Since we have shown that M1(H) is a base for the lattice
cone M+(H) in M(H), it is indeed a simplex.

The extreme boundary of M1(H) is exactly the set

{ε(x,y) | (x, y) ∈ H}

of all Dirac measures on H [16, Proposition 437P]. Proposi-
tion 3 yields that the extreme boundary of Bel is precisely
the set

{a(ε(x,y)) | (x, y) ∈ H},

where a is given by (4). Hence we can conclude that for every
A ∈ B(R),

a(ε(x,y))(A) = ε(x,y)[[X,Y ] ⊆ A] =

ε(x,y)({x′, y′) ∈ H | [x, y] ⊆ A}) = Bel[x,y](A).

The last assertion of the theorem follows from the fact that
the mapping

(x, y) ∈ H 7→ Bel[x,y]



is a composition of the two mappings

(x, y) ∈ H 7→ ε(x,y) and ε(x,y) 7→ Bel[x,y] .

The former is a homeomorphism of H and extM1(H) by
[13, p.237] and the latter is homeomorphism of extM1(H)
and extBel by Proposition 3.

The set Bel is not closed and thus not compact either. It
is enough to take a sequence of belief measures (Bel[0,n]).
This sequence vaguely converges to the zero belief function
in Bel[0,1]: since

Bel[0,n] = a(ε(0,n))

for each n ∈ N, and the sequence (ε(0,n)) vaguely converges
to the zero measure as

lim
n→∞

∫
H

f dε(0,n) = lim
n→∞

f(0, n) = 0,

for every f ∈ Cc(H), we obtain from continuity of a that
a(0) = 0.

IV. COMPARISON WITH OTHER SPACES OF BELIEF
FUNCTIONS

The study of various spaces of belief functions has already
appeared in a number of papers [7], [8], [17]. However, our
results neither imply nor are implied by the results of Shafer
[7] and Denneberg with Brüning [8]. The basic setting for
belief functions developed in those two papers is as follows.
Let Ω be a nonempty set and A be an algebra of subsets of
Ω. We say that Bel : A → [0, 1] is a belief measure on the
algebra A if it satisfies the following conditions:

(i) Bel(∅) = 0,Bel(Ω) = 1
(ii) if A,B ∈ A are such that A ⊆ B, then

Bel(A) ≤ Bel(B)

(iii) if n ≥ 2 and A1, . . . , An ∈ A, then

Bel
( n∪

i=1

Ai

)
+

∑
I⊆{1,...,n}

I ̸=∅

(−1)|I| Bel
(∩

i∈I

Ai

)
≥ 0

The set BelA of all such belief measures on A is then
convex and compact in the subspace topology of the product
topological space [0, 1]A. In fact, it is not difficult to show that
BelA is also a simplex. It is known [8, Proposition 4.1] that
the set of extreme points of BelA coincides with the set of all
{0, 1}-valued belief measures. However, the compactness of
BelA must be put in contrast with the lack of compactness of
Bel. The framework for belief functions adopted in this paper
cannot be seen as a special instance: if Ω = R, A = B(R),
then Bel ( BelA. The inclusion is proper since there exist
elements in BelA that fail to satisfy some of the conditions
(iv)-(vi) in Proposition 1.

On the other hand, the space of belief functions on the
algebra of all subsets of a finite universe Ω can be identified
with a particular subset of Bel in our setting. Precisely, let
|Ω| = n, where n > 0, and A = 2Ω. Then BelA is an
(2n−2)-simplex [17, Corollary 1]. In order to establish a link

to the belief measures on real numbers, put N = 2n − 1 and
consider a finite subset C of H with N elements. The set of
all probability measures on 2C is an (N −1)-simplex that can
be identified with the set of all mappings p : C → [0, 1] such
that

∑
(x,y)∈C p(x, y) = 1. Each such mapping corresponds

to a Borel probability measure P supported by a subset of C,
which defines in turn a belief measure on B(R) by using (1):
for every A ∈ B(R), we get

Bel(A) = P ({(x, y) ∈ C | [x, y] ⊆ A}) =
∑

(x,y)∈C
[x,y]⊆A

p(x, y).

An inessential modification of the proofs in this article shows
that the set of all belief functions whose probability distribu-
tions P are supported by a subset of C is an (N−1)-simplex.
This makes possible to identify such belief measures with the
set BelA of all belief funtions on A.
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